Share Email Print
cover

Proceedings Paper

Influence of birefringence splitting on ultrafast polarization oscillations in VCSELs
Author(s): Markus Lindemann; Nils C. Gerhardt; Martin R. Hofmann; Tobias Pusch; Rainer Michalzik
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Spin-VCSELs offer numerous advantages over conventional lasers like reduced threshold, spin amplification and ultrafast polarization dynamics. The latter have the potential to generate polarization modulation frequencies far above the conventional intensity relaxation oscillation frequency of one and the same device and thus can be an interesting basis for ultrafast optical data transmission. We have shown that fast polarization oscillations can be generated by pulsed spin injection. Furthermore the oscillation frequency can be tuned via modification of the VCSEL’s cavity strain. Using this technique, oscillation frequencies with a tuning range from nearly zero up to 40 GHz can be demonstrated. In the device under study, this is more than six times the intensity relaxation oscillation frequency, which is nearly independent of the strain. Now we demonstrate the influence of the strain-induced birefringence splitting on the oscillation frequency. We find that the polarization oscillation frequency is directly corresponding to the birefringence splitting. The reason is that the polarization oscillates according to the beating frequency of the two orthogonal linearly polarized cavity modes in the VCSEL. In the case of spin-pumping, those two modes form the circular polarization output of the laser by superposition. Their frequencies are shifted by birefringence manipulation and form the basis of birefringence splitting. The measurement results are compared with simulations employing the spin-flip model. Our results show that high-frequency polarization oscillations can not only be generated with the help of external strain but with high birefringence splitting in general.

Paper Details

Date Published: 4 March 2016
PDF: 7 pages
Proc. SPIE 9766, Vertical-Cavity Surface-Emitting Lasers XX, 97660L (4 March 2016); doi: 10.1117/12.2212413
Show Author Affiliations
Markus Lindemann, Ruhr-Univ. Bochum (Germany)
Nils C. Gerhardt, Ruhr-Univ. Bochum (Germany)
Martin R. Hofmann, Ruhr-Univ. Bochum (Germany)
Tobias Pusch, Univ. Ulm (Germany)
Rainer Michalzik, Univ. Ulm (Germany)


Published in SPIE Proceedings Vol. 9766:
Vertical-Cavity Surface-Emitting Lasers XX
Kent D. Choquette; James K. Guenter, Editor(s)

© SPIE. Terms of Use
Back to Top