Share Email Print
cover

Proceedings Paper

Mid-infrared quantum cascade laser integrated with distributed Bragg reflector
Author(s): Hiroyuki Yoshinaga; Jun-ichi Hashimoto; Hiroki Mori; Yukihiro Tsuji; Makoto Murata; Mitsuru Ekawa; Tsukuru Katsuyama
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quantum cascade lasers (QCLs) are promising as compact light sources in the mid-infrared region. In order to put them into a practical use, their relatively high threshold currents should be reduced. Facet reflectivity increase by distributed Bragg reflector (DBR) is effective for this purpose, but there have been few reports on DBR-integrated QCLs (DBRQCLs). In this paper, we report a successful operation of a DBR-QCL in 7 μm wavelength region. With the fabrication, an n-InP buffer layer, a core region consisting of AlInAs/GaInAs superlattices, an n-InP cladding layer, and an n-GaInAs contact layer were successively grown on an n-InP substrate using OMVPE in the first growth. Then, the wafer was processed into a mesa-stripe, and it was buried by an Fe-doped InP current-blocking layer to form a buriedheterostructure (BH) waveguide. After that, a DBR in which semiconductor-walls and air-gaps were alternately arranged was formed at the front or end of the cavity by dry-etching the epitaxial layers of the air-gap regions, and thus a DBRQCL was fabricated. A DBR-QCL chip (Mesa-width:10 μm, Cavity-legth:2 mm) which had a DBR-structure consisting of 1 pair of a 3λ/4-thick semiconductor-wall/3λ/4-thick air-gap at the front end and a high reflective facet at the rear end oscillated successfully under continuous-wave condition at 15°C. This is the first report on the InP-based DBR-QCL to our knowledge. The facet reflectivity at the DBR was 66%, which was about two times larger than that of the cleaved facet. This result clearly shows that the DBR-structure is effective for threshold current reduction of QCL.

Paper Details

Date Published: 13 February 2016
PDF: 6 pages
Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics XIII, 97552V (13 February 2016); doi: 10.1117/12.2212332
Show Author Affiliations
Hiroyuki Yoshinaga, Sumitomo Electric Industries, Ltd. (Japan)
Jun-ichi Hashimoto, Sumitomo Electric Industries, Ltd. (Japan)
Hiroki Mori, Sumitomo Electric Industries, Ltd. (Japan)
Yukihiro Tsuji, Sumitomo Electric Industries, Ltd. (Japan)
Makoto Murata, Sumitomo Electric Industries, Ltd. (Japan)
Mitsuru Ekawa, Sumitomo Electric Industries, Ltd. (Japan)
Tsukuru Katsuyama, Sumitomo Electric Industries, Ltd. (Japan)


Published in SPIE Proceedings Vol. 9755:
Quantum Sensing and Nano Electronics and Photonics XIII
Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top