Share Email Print
cover

Proceedings Paper

Low-dose intrathecal fluorescein for diagnosis of cerebrospinal fluid rhinorrhea using the scanning fiber endoscope in the human nasal cavities
Author(s): Vivian W. Hou; Calvin G. Davis; Greg E. Davis; Eric J. Seibel
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Intrathecal fluorescein (ITF) enhances detection of cerebrospinal fluid rhinorrhea (CSFR). Clinically administered doses fall in the range of 0.1ml to 0.5ml of 5% to 10% fluorescein (1.3×10-3M to 1.3×10-2M). Though uncommon, significant morbidities associated with high doses of fluorescein have been reported. High concentrations are necessary for white light visual assessment; in contrast, fluorescent imaging enhances signal contrast and requires lower ITF concentrations for visualization. The ultrathin and flexible, multimodal scanning fiber endoscope (SFE) can visualize nanomolar concentrations of fluorescein as pseudocolor over reflectance, video-rate imaging. The application of the SFE for CSFR detection was assessed in a cadaver study. Briefly, 10μM (1×10-5M) fluorescein, 100X-1000X less than the standard clinical dose, was injected intra-cranially into the epidural space through an orbital roof puncture. The resulting rhinorrhea was assessed with a conventional, rigid ENT scope and second with the SFE in both video reflectance and multimodal fluorescent imaging modes. Neither system could visualize the 10μM ITF during white light imaging however the nanomolar sensitive SFE visualized the rhinorrhea during fluorescent imaging. Despite the low concentration used, a target-to-background ratio of 5.6 ± 2.7 was achieved. To demonstrate SFE guidance of CSFR detection and repair, de-identified patient computed tomography (CT) scans were used to generate 3D printed phantoms. Cases were selected for unique anatomical features and overall clinical difficulty as determined by an experienced ENT clinician (GED). The sensitivity and minimally invasive nature of the SFE provide a unique platform for enhancing diagnosis and monitoring interventions in surgical endoscopic approaches into the sinuses.

Paper Details

Date Published: 4 March 2016
PDF: 8 pages
Proc. SPIE 9715, Optical Diagnostics and Sensing XVI: Toward Point-of-Care Diagnostics, 971514 (4 March 2016); doi: 10.1117/12.2212083
Show Author Affiliations
Vivian W. Hou, Univ. of Washington (United States)
Calvin G. Davis, Univ. of Washington (United States)
Greg E. Davis, Univ. of Washington (United States)
Eric J. Seibel, Univ. of Washington (United States)


Published in SPIE Proceedings Vol. 9715:
Optical Diagnostics and Sensing XVI: Toward Point-of-Care Diagnostics
Gerard L. Coté, Editor(s)

© SPIE. Terms of Use
Back to Top