Share Email Print
cover

Proceedings Paper

Enhanced speed in fluorescence imaging using beat frequency multiplexing
Author(s): Hideharu Mikami; Hirofumi Kobayashi; Yisen Wang; Syed Hamad; Yasuyuki Ozeki; Keisuke Goda
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

Paper Details

Date Published: 7 March 2016
PDF: 6 pages
Proc. SPIE 9720, High-Speed Biomedical Imaging and Spectroscopy: Toward Big Data Instrumentation and Management, 97200T (7 March 2016); doi: 10.1117/12.2211836
Show Author Affiliations
Hideharu Mikami, The Univ. of Tokyo (Japan)
Hirofumi Kobayashi, The Univ. of Tokyo (Japan)
Yisen Wang, The Univ. of Tokyo (Japan)
Tianjin Univ. (China)
Syed Hamad, The Univ. of Tokyo (Japan)
Yasuyuki Ozeki, The Univ. of Tokyo (Japan)
Keisuke Goda, The Univ. of Tokyo (Japan)
Univ. of California, Los Angeles (United States)
Japan Space and Technology Agency (Japan)


Published in SPIE Proceedings Vol. 9720:
High-Speed Biomedical Imaging and Spectroscopy: Toward Big Data Instrumentation and Management
Kevin K. Tsia; Keisuke Goda, Editor(s)

© SPIE. Terms of Use
Back to Top