Share Email Print
cover

Proceedings Paper

Enlightening intracellular complexity of living cells with quantitative phase microscopy
Author(s): C. Martinez Torres; B. Laperrousaz; L. Berguiga; E. Boyer Provera; J. Elezgaray; F. E. Nicolini; V. Maguer-Satta; A. Arneodo; F. Argoul
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

Paper Details

Date Published: 9 March 2016
PDF: 8 pages
Proc. SPIE 9718, Quantitative Phase Imaging II, 97182C (9 March 2016); doi: 10.1117/12.2211314
Show Author Affiliations
C. Martinez Torres, CNRS, Lab. de Physique, Ecole Normale Supérieure de Lyon (France)
Univ. de Lyon 1 (France)
B. Laperrousaz, CNRS, Lab. de Physique, Ecole Normale Supérieure de Lyon (France)
Univ. de Lyon 1 (France)
CNRS, INSERM, Ctr. de Recherche en Cancérologie de Lyon (France)
L. Berguiga, Univ. de Lyon 1 (France)
CNRS, Lab. Joliot-Curie, Ecole Normale Supérieure de Lyon (France)
E. Boyer Provera, CNRS, Lab. de Physique, Ecole Normale Supérieure de Lyon (France)
Univ. de Lyon 1 (France)
J. Elezgaray, CNRS, Institut de Chimie et Biologie des Membranes et des Nano-objets (France)
Univ. de Bordeaux (France)
F. E. Nicolini, Univ. de Lyon 1 (France)
CNRS, INSERM, Ctr. de Recherche en Cancérologie de Lyon (France)
Ctr. Hospitalier Lyon Sud (France)
V. Maguer-Satta, Univ. de Lyon 1 (France)
CNRS, INSERM, Ctr. de Recherche en Cancérologie de Lyon (France)
A. Arneodo, CNRS, Lab. de Physique, Ecole Normale Supérieure de Lyon (France)
Univ. de Lyon 1 (France)
Univ. de Bordeaux (France)
F. Argoul, CNRS, Lab. de Physique, Ecole Normale Supérieure de Lyon (France)
Univ. de Lyon 1 (France)
Univ. de Bordeaux (France)


Published in SPIE Proceedings Vol. 9718:
Quantitative Phase Imaging II
Gabriel Popescu; YongKeun Park, Editor(s)

© SPIE. Terms of Use
Back to Top