Share Email Print

Proceedings Paper

High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

Paper Details

Date Published: 27 April 2016
PDF: 1 pages
Proc. SPIE 9710, Optical Elastography and Tissue Biomechanics III, 97100B (27 April 2016); doi: 10.1117/12.2211267
Show Author Affiliations
Shaozhen Song, Univ. of Washington (United States)
Bao-Yu Hsieh, Univ. of Washington (United States)
Wei Wei, Univ. of Washington (United States)
Tueng Shen, Univ. of Washington (United States)
Matthew O'Donnell, Univ. of Washington (United States)
Ruikang K. Wang, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 9710:
Optical Elastography and Tissue Biomechanics III
Kirill V. Larin; David D. Sampson, Editor(s)

© SPIE. Terms of Use
Back to Top