Share Email Print

Proceedings Paper

Towards pattern generation and chaotic series prediction with photonic reservoir computers
Author(s): Piotr Antonik; Michiel Hermans; François Duport; Marc Haelterman; Serge Massar
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.

Paper Details

Date Published: 9 March 2016
PDF: 12 pages
Proc. SPIE 9732, Real-time Measurements, Rogue Events, and Emerging Applications, 97320B (9 March 2016); doi: 10.1117/12.2210948
Show Author Affiliations
Piotr Antonik, Univ. Libre de Bruxelles (Belgium)
Michiel Hermans, Univ. Libre de Bruxelles (Belgium)
François Duport, Univ. Libre de Bruxelles (Belgium)
Marc Haelterman, Univ. Libre de Bruxelles (Belgium)
Serge Massar, Univ. Libre de Bruxelles (Belgium)

Published in SPIE Proceedings Vol. 9732:
Real-time Measurements, Rogue Events, and Emerging Applications
Bahram Jalali; Sergei K. Turitsyn; Daniel R. Solli; John M. Dudley, Editor(s)

© SPIE. Terms of Use
Back to Top