Share Email Print

Proceedings Paper

Total retinal blood flow and reproducibility evaluation by three beam optical Doppler tomography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a three beam optical Doppler tomography (ODT) technique suitable for 3-D velocity and flow measurements to evaluate total retinal blood circulation from and to the optic nerve head (ONH). The system consists of three independent ODT channels. Superluminescent diodes with a central wavelength of 840 nm and a spectral bandwidth of 50 nm were used. The sources are coupled to collimators resting in a specially designed mount to ensure a well-defined beam geometry, necessary for the full reconstruction of the three dimensional velocity vector. The reconstruction works without prior knowledge on the vessel geometry, which is normally required for ODT systems with less than three beams. The beams share a common bulk optics Michelson interferometer, while the detection comprises three identical spectrometers with a line scan rate of 50 kHz. 20 eyes of healthy volunteers were imaged with the 3 beam ODT, employing a circular scan pattern around the ONH. The mean total blood flow was calculated for arteries (47.1 ± 2.4 μl/min (mean ± SD)) and veins (47.1 ± 2.7 μl/min μl/min) independently. The two results showed no significant difference (paired t-test, p < 0.96), rendering both equally reliable for total flow measurements. Furthermore the reproducibility of the method was evaluated for the total flow and flow, velocities within each individual vessel of 6 eyes. The average variation for total flow measurements is sufficiently low to detect deviations of ~ 6% indicating high precision of the proposed method.

Paper Details

Date Published: 4 March 2016
PDF: 5 pages
Proc. SPIE 9693, Ophthalmic Technologies XXVI, 969302 (4 March 2016); doi: 10.1117/12.2210910
Show Author Affiliations
Richard Haindl, Medizinische Univ. Wien (Austria)
Wolfgang Trasischker, Medizinische Univ. Wien (Austria)
Wellman Ctr. for Photomedicine, Massachusetts General Hospital (United States)
Harvard Medical School (United States)
Andreas Wartak, Medizinische Univ. Wien (Austria)
Bernhard Baumann, Medizinische Univ. Wien (Austria)
Michael Pircher, Medizinische Univ. Wien (Austria)
Christoph K. Hitzenberger, Medizinische Univ. Wien (Austria)

Published in SPIE Proceedings Vol. 9693:
Ophthalmic Technologies XXVI
Fabrice Manns; Per G. Söderberg; Arthur Ho, Editor(s)

© SPIE. Terms of Use
Back to Top