Share Email Print

Proceedings Paper

Inverse design engineering of all-silicon polarization beam splitters
Author(s): Lars H. Frandsen; Ole Sigmund
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.

Paper Details

Date Published: 14 March 2016
PDF: 6 pages
Proc. SPIE 9756, Photonic and Phononic Properties of Engineered Nanostructures VI, 97560Y (14 March 2016); doi: 10.1117/12.2210848
Show Author Affiliations
Lars H. Frandsen, Technical Univ. of Denmark (Denmark)
Ole Sigmund, Technical Univ. of Denmark (Denmark)

Published in SPIE Proceedings Vol. 9756:
Photonic and Phononic Properties of Engineered Nanostructures VI
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top