Share Email Print
cover

Proceedings Paper

Ability of combined Near-Infrared Spectroscopy-Intravascular Ultrasound (NIRS-IVUS) imaging to detect lipid core plaques and estimate cap thickness in human autopsy coronary arteries
Author(s): S. J. Grainger; J. L. Su; C. A. Greiner; M. D. Saybolt; R. L. Wilensky; J. S. Raichlen; S. P. Madden; J. E. Muller
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The ability to determine plaque cap thickness during catheterization is thought to be of clinical importance for plaque vulnerability assessment. While methods to compositionally assess cap integrity are in development, a method utilizing currently available tools to measure cap thickness is highly desirable. NIRS-IVUS is a commercially available dual imaging method in current clinical use that may provide cap thickness information to the skilled reader; however, this is as yet unproven.

Ten autopsy hearts (n=15 arterial segments) were scanned with the multimodality NIRS-IVUS catheter (TVC Imaging System, Infraredx, Inc.) to identify lipid core plaques (LCPs). Skilled readers made predictions of cap thickness over regions of chemogram LCP, using NIRS-IVUS. Artery segments were perfusion fixed and cut into 2 mm serial blocks. Thin sections stained with Movat’s pentachrome were analyzed for cap thickness at LCP regions. Block level predictions were compared to histology, as classified by a blinded pathologist.

Within 15 arterial segments, 117 chemogram blocks were found by NIRS to contain LCP. Utilizing NIRSIVUS, chemogram blocks were divided into 4 categories: thin capped fibroatheromas (TCFA), thick capped fibroatheromas (ThCFA), pathological intimal thickening (PIT)/lipid pool (no defined cap), and calcified/unable to determine cap thickness. Sensitivities/specificities for thin cap fibroatheromas, thick cap fibroatheromas, and PIT/lipid pools were 0.54/0.99, 0.68/0.88, and 0.80/0.97, respectively. The overall accuracy rate was 70.1% (including 22 blocks unable to predict, p = 0.075). In the absence of calcium, NIRS-IVUS imaging provided predictions of cap thickness over LCP with moderate accuracy. The ability of this multimodality imaging method to identify vulnerable coronary plaques requires further assessment in both larger autopsy studies, and clinical studies in patients undergoing NIRS-IVUS imaging.

Paper Details

Date Published: 15 March 2016
PDF: 5 pages
Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016, 97084V (15 March 2016); doi: 10.1117/12.2209664
Show Author Affiliations
S. J. Grainger, Infraredx, Inc. (United States)
J. L. Su, Infraredx, Inc. (United States)
C. A. Greiner, Infraredx, Inc. (United States)
M. D. Saybolt, Hospital of the Univ. of Pennsylvania (United States)
R. L. Wilensky, Hospital of the Univ. of Pennsylvania (United States)
J. S. Raichlen, AstraZeneca Pharmaceuticals (United States)
S. P. Madden, Infraredx, Inc. (United States)
J. E. Muller, CIMIT Vulnerable Plaque and Patient Program (United States)


Published in SPIE Proceedings Vol. 9708:
Photons Plus Ultrasound: Imaging and Sensing 2016
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top