Share Email Print
cover

Proceedings Paper

Ultrathin endoscopes: nonlinear lensless imaging at the tip of a multimode fiber (Conference Presentation)
Author(s): Siddharth Sivankutty; Esben R. Andresen; Géraud Bouwmans; Serge Monneret; Hervé Rigneault

Paper Abstract

Recent advances in wavefront shaping techniques have enabled so-called lensless endoscopes using fiber probes. Unlocking the full potential of such endoscopes call for the capability of optically sectioned and/or label free imaging. Or in other words, imaging through fibers must retain the functionality of a nonlinear microscope. This is a key challenge due to the temporal broadening of ultrashort pulses in fibers owing to modal dispersion. Here, we detail the first ever demonstration of two photon fluorescence imaging at the distal tip of a conventional graded index (GRIN) multimode fiber. GRIN fibers possess a high mode density, excellent throughput and limited temporal broadening. These features, in addition to its ready availability, make them attractive candidates for ultrathin endoscopes. In our approach, we apply the transmission matrix formalism and treat these fibers akin to highly scattering media. This lets us retrieve combinations of input modes that would generate intense focal spots throughout the field of view. Furthermore, we identify a regime where the modal dispersion in the fiber is minimal and two-photon excitation with femtosecond light pulses is possible. This allows us to perform two-photon imaging with ultrashort pulses in an epi-detection configuration analogous to conventional nonlinear microscopes. Finally, these concepts are validated by acquiring optically sectioned two photon fluorescence images of 3D samples with cellular resolution. We believe this first report of an ultrathin rigid endoscope of only 125 µm thickness would further accelerate the development of novel tools for demanding applications in biological imaging and opto-genetics.

Paper Details

Date Published: 27 April 2016
PDF: 1 pages
Proc. SPIE 9717, Adaptive Optics and Wavefront Control for Biological Systems II, 97171D (27 April 2016); doi: 10.1117/12.2209266
Show Author Affiliations
Siddharth Sivankutty, Institut Fresnel (France)
Esben R. Andresen, Institut Fresnel (France)
Géraud Bouwmans, Lab. de Physique des Lasers, Atomes et Molécules (France)
Serge Monneret, Institut Fresnel (France)
Hervé Rigneault, Institut Fresnel (France)


Published in SPIE Proceedings Vol. 9717:
Adaptive Optics and Wavefront Control for Biological Systems II
Thomas G. Bifano; Joel Kubby; Sylvain Gigan, Editor(s)

© SPIE. Terms of Use
Back to Top