Share Email Print

Proceedings Paper

Cavitation bubble dynamics during thulium fiber laser lithotripsy
Author(s): Luke A. Hardy; Joshua D. Kennedy; Christopher R. Wilson; Pierce B. Irby M.D.; Nathaniel M. Fried
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 ± 110 μm from fiber tip, and maximum bubble diameters averaged 590 ± 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

Paper Details

Date Published: 29 February 2016
PDF: 6 pages
Proc. SPIE 9689, Photonic Therapeutics and Diagnostics XII, 96891B (29 February 2016); doi: 10.1117/12.2208168
Show Author Affiliations
Luke A. Hardy, The Univ. of North Carolina at Charlotte (United States)
Joshua D. Kennedy, The Univ. of North Carolina at Charlotte (United States)
Christopher R. Wilson, The Univ. of North Carolina at Charlotte (United States)
Pierce B. Irby M.D., Carolinas Medical Ctr. (United States)
Nathaniel M. Fried, The Univ. of North Carolina at Charlotte (United States)
Carolinas Medical Ctr. (United States)

Published in SPIE Proceedings Vol. 9689:
Photonic Therapeutics and Diagnostics XII
Hyun Wook Kang; Guillermo J. Tearney M.D.; Melissa C. Skala; Bernard Choi; Andreas Mandelis; Brian J. F. Wong M.D.; Justus F. Ilgner M.D.; Nikiforos Kollias; Paul J. Campagnola; Kenton W. Gregory M.D.; Laura Marcu; Haishan Zeng, Editor(s)

© SPIE. Terms of Use
Back to Top