Share Email Print

Proceedings Paper

Shaping non-diffracting beams with a digital micromirror device
Author(s): Yu-Xuan Ren; Zhao-Xiang Fang; Rong-De Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

Paper Details

Date Published: 15 March 2016
PDF: 6 pages
Proc. SPIE 9761, Emerging Digital Micromirror Device Based Systems and Applications VIII, 97610O (15 March 2016); doi: 10.1117/12.2208108
Show Author Affiliations
Yu-Xuan Ren, Shanghai Institute for Biological Sciences (China)
Zhao-Xiang Fang, Univ. of Science and Technology of China (China)
Rong-De Lu, Univ. of Science and Technology of China (China)

Published in SPIE Proceedings Vol. 9761:
Emerging Digital Micromirror Device Based Systems and Applications VIII
Michael R. Douglass; Philip S. King; Benjamin L. Lee, Editor(s)

© SPIE. Terms of Use
Back to Top