Share Email Print
cover

Proceedings Paper

High-performance flat data center network architecture based on scalable and flow-controlled optical switching system
Author(s): Nicola Calabretta; Wang Miao; Harm Dorren
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

Paper Details

Date Published: 15 March 2016
PDF: 10 pages
Proc. SPIE 9753, Optical Interconnects XVI, 97530W (15 March 2016); doi: 10.1117/12.2205231
Show Author Affiliations
Nicola Calabretta, Technische Univ. Eindhoven (Netherlands)
Wang Miao, Technische Univ. Eindhoven (Netherlands)
Harm Dorren, Technische Univ. Eindhoven (Netherlands)


Published in SPIE Proceedings Vol. 9753:
Optical Interconnects XVI
Henning Schröder; Ray T. Chen, Editor(s)

© SPIE. Terms of Use
Back to Top