Share Email Print

Proceedings Paper

Indirect visual cryptography scheme
Author(s): Xiubo Yang; Tuo Li; Yishi Shi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Visual cryptography (VC), a new cryptographic scheme for image. Here in encryption, image with message is encoded to be N sub-images and any K sub-images can decode the message in a special rules (N>=2, 2<=K<=N). Then any K of the N sub-images are printed on transparency and stacked exactly, the message of original image will be decrypted by human visual system, but any K-1 of them get no information about it. This cryptographic scheme can decode concealed images without any cryptographic computations, and it has high security. But this scheme lacks of hidden because of obvious feature of sub-images. In this paper, we introduce indirect visual cryptography scheme (IVCS), which encodes sub-images to be pure phase images without visible strength based on encoding of visual cryptography. The pure phase image is final ciphertexts. Indirect visual cryptography scheme not only inherits the merits of visual cryptography, but also raises indirection, hidden and security. Meanwhile, the accuracy alignment is not required any more, which leads to the strong anti-interference capacity and robust in this scheme. System of decryption can be integrated highly and operated conveniently, and its process of decryption is dynamic and fast, which all lead to the good potentials in practices.

Paper Details

Date Published: 8 October 2015
PDF: 7 pages
Proc. SPIE 9675, AOPC 2015: Image Processing and Analysis, 96752Q (8 October 2015); doi: 10.1117/12.2202771
Show Author Affiliations
Xiubo Yang, Univ. of Chinese Academy of Sciences (China)
Tuo Li, Univ. of Chinese Academy of Sciences (China)
Yishi Shi, Univ. of Chinese Academy of Sciences (China)
Institute of Information Engineering (China)

Published in SPIE Proceedings Vol. 9675:
AOPC 2015: Image Processing and Analysis
Chunhua Shen; Weiping Yang; Honghai Liu, Editor(s)

© SPIE. Terms of Use
Back to Top