Share Email Print

Proceedings Paper

Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip systems
Author(s): Yushi Huang; Dayanthi Nugegoda; Donald Wlodkowic
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Behavioral ecotoxicity tests are gaining an increasing recognition in environmental toxicology. Behavior of sensitive bioindicator species can change rapidly in response to an acute exposure to contaminants and thus has a much higher sensitivity as compared to conventional LC50 mortality tests. Furthermore, behavioral endpoints seems to be very good candidates to develop early-warning biomonitoring systems needed for rapid chemical risk assessment. Behavioral tests are non-invasive, fast, do not harm indicator organisms (behavioural changes are very rapid) and are thus fully compatible with 3R (Replacement – Reduction – Refinement) principle encouraging alternatives to conventional animal testing. These characteristics are essential when designing improved ecotoxicity tests for chemical risk assessment.

In this work, we present a pilot development of miniaturized Lab-on-a-Chip (LOC) devices for studying toxin avoidance behaviors of small aquatic crustaceans. As an investigative tool, LOCs represent a new direction that may miniaturize and revolutionize behavioral ecotoxicology. Specifically our innovative microfluidic prototype: (i) enables convening “caging” of specimens for real-time videomicroscopy; (ii) eliminates the evaporative water loss thus providing an opportunity for long-term behavioral studies; (iii) exploits laminar fluid flow under low Reynolds numbers to generate discrete domains and gradients enabling for the first time toxin avoidance studies on small aquatic crustaceans; (iv) integrates off-the-chip mechatronic interfaces and video analysis algorithms for single animal movement analysis. We provide evidence that by merging innovative bioelectronic and biomicrofluidic technologies we can deploy inexpensive and reliable systems for culture, electronic tracking and complex computational analysis of behavior of bioindicator organisms.

Paper Details

Date Published: 22 December 2015
PDF: 7 pages
Proc. SPIE 9668, Micro+Nano Materials, Devices, and Systems, 96680Y (22 December 2015); doi: 10.1117/12.2202394
Show Author Affiliations
Yushi Huang, RMIT Univ. (Australia)
Dayanthi Nugegoda, RMIT Univ. (Australia)
Donald Wlodkowic, RMIT Univ. (Australia)

Published in SPIE Proceedings Vol. 9668:
Micro+Nano Materials, Devices, and Systems
Benjamin J. Eggleton; Stefano Palomba, Editor(s)

© SPIE. Terms of Use
Back to Top