Share Email Print
cover

Proceedings Paper

Multimode fibres: a pathway towards deep-tissue fluorescence microscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fluorescence microscopy has emerged as a pivotal platform for imaging in the life sciences. In recent years, the overwhelming success of its different modalities has been accompanied by various efforts to carry out imaging deeper inside living tissues. A key challenge of these efforts is to overcome scattering and absorption of light in such environments. Multiple strategies (e.g. multi-photon, wavefront correction techniques) extended the penetration depth to the current state-of-the-art of about 1000μm at the resolution of approximately 1μm. The only viable strategy for imaging deeper than this is by employing a fibre bundle based endoscope. However, such devices lack resolution and have a significant footprint (1mm in diameter), which prohibits their use in studies involving tissues deep in live animals. We have recently demonstrated a radically new approach that delivers the light in/out of place of interest through an extremely thin (tens of microns in diameter) cylindrical glass tube called a multimode optical fibre (MMF). Not only is this type of delivery much less invasive compared to fibre bundle technology, it also enables higher resolution and has the ability to image at any plane behind the fibre without any auxiliary optics. The two most important limitations of this exciting technology are (i) the lack of bending flexibility and (ii) high demands on computational power, making the performance of such systems slow. We will discuss how to overcome these limitations.

Paper Details

Date Published: 22 December 2015
PDF: 6 pages
Proc. SPIE 9668, Micro+Nano Materials, Devices, and Systems, 966840 (22 December 2015); doi: 10.1117/12.2202355
Show Author Affiliations
Martin Plöschner, Univ. of Dundee (United Kingdom)
Macquarie Univ. (Australia)
Tomáš Tyc, Masaryk Univ. (Czech Republic)
Tomáš Čižmár, Univ. of Dundee (United Kingdom)


Published in SPIE Proceedings Vol. 9668:
Micro+Nano Materials, Devices, and Systems
Benjamin J. Eggleton; Stefano Palomba, Editor(s)

© SPIE. Terms of Use
Back to Top