Share Email Print
cover

Proceedings Paper

Compensation system for FM-to-AM effects in high-power laser system
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the high-power laser facility, frequency modulation to amplitude modulation (FM-to-AM) effects has seriously affected the power balance between beams and restricted the laser flux levels of safe operation in the system. For FM-to- AM effects produced by gain-narrowing effects, according to the amplifier gain-narrowing function model, after simulating and analyzing the properties of FM-to-AM effects, a corresponding compensation function is designed. Using sinusoidal compensation function, with the use of a birefringent crystal and liquid crystal modulator, adjusting the crystal angle in the range of 45 °, the center wavelength could be reduced in the magnitude of the range from 0 to 30dBm. By changing the voltage of the liquid crystal, the center wavelength could be adjusted within 1051.5-1054.5nm freely. For the regenerative amplifier with the gain of 70dB and input center wavelength of 1053nm and bandwidth of 0.7nm, the output FM-to-AM magnitude could be controlled within ~11% by this compensation system.

Paper Details

Date Published: 15 October 2015
PDF: 6 pages
Proc. SPIE 9671, AOPC 2015: Advances in Laser Technology and Applications, 96711F (15 October 2015); doi: 10.1117/12.2199901
Show Author Affiliations
Zuiyu Chen, Shanghai Institute of Optics and Fine Mechanics (China)
Youen Jiang, Shanghai Institute of Optics and Fine Mechanics (China)
Jiangfeng Wang, Shanghai Institute of Optics and Fine Mechanics (China)
Wei Fan, Shanghai Institute of Optics and Fine Mechanics (China)
Xuechun Li, Shanghai Institute of Optics and Fine Mechanics (China)


Published in SPIE Proceedings Vol. 9671:
AOPC 2015: Advances in Laser Technology and Applications
Shibin Jiang; Lijun Wang; Chun Tang; Yong Cheng, Editor(s)

© SPIE. Terms of Use
Back to Top