Share Email Print
cover

Proceedings Paper

Research on spaceborne low light detection based on EMCCD and CMOS
Author(s): Xingxing Wu; Jinguo Liu; Huaide Zhou; Boyan Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Electron Multiplying Charge Coupled Device(EMCCD) can realize read out noise of less than 1e- by promoting gain of charges with the charge multiplication principle and is suitable for low light imaging. With the development of back Illuminated CMOS technology CMOS with high quantum efficiency and less than 1.5e- read noise has been developed by Changchun Institute of Optics, Fine Mechanics and Physics(CIOMP). Spaceborne low light detection cameras based on EMCCD CCD201 and based on CMOS were respectively established and system noise models were founded. Low light detection performance as well as principle of spaceborne camera based on EMCCD and spaceborne camera based on CMOS were compared and analyzed. Results of analysis indicated that signal to noise(SNR) of spaceborne low light detection camera based on EMCCD would be 23.78 as radiance at entrance pupil of the camera was as low as 10-9 W/cm2/sr/μm at the focal plane temperature of 20°C. Spaceborne low light detection camera worked in starring mode and the integration time was 2 second. SNR of low light detection camera based on CMOS would be 27.42 under the same conditions. If cooling systems were used and the temperature was lowered from 20°C to -20°C, SNR of low light detection camera based on EMCCD would be improved to 27.533 while SNR of low light detection camera based on CMOS would be improved to 27.79.

Paper Details

Date Published: 15 October 2015
PDF: 5 pages
Proc. SPIE 9674, AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology, 967422 (15 October 2015); doi: 10.1117/12.2199834
Show Author Affiliations
Xingxing Wu, Changchun Institute of Optics, Fine Mechanics and Physics (China)
Jinguo Liu, Changchun Institute of Optics, Fine Mechanics and Physics (China)
Huaide Zhou, Changchun Institute of Optics, Fine Mechanics and Physics (China)
Boyan Zhang, Changchun Institute of Optics, Fine Mechanics and Physics (China)


Published in SPIE Proceedings Vol. 9674:
AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology
Haimei Gong; Nanjian Wu; Yang Ni; Weibiao Chen; Jin Lu, Editor(s)

© SPIE. Terms of Use
Back to Top