Share Email Print
cover

Proceedings Paper

Filtering and analysis on the random drift of FOG
Author(s): Yun-Peng Tian; Xiao-Jun Yang; Yun-Zeng Guo; Feng Liu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fiber optic gyro (FOG) is an optical gyroscope which is based on the Sagnac effect and uses the optical fiber coil as light propagation channel. Gyro drift consists of two components: systemic drift and random drift. Systemic drift can be compensated by testing and calibrating. Random drift changes with time, so it becomes an important indicator to measure the precision of gyroscope, which has a great impact on the inertial navigation system. It can’t be compensated by the simple method. Random drift is a main error of fiber optic gyro (FOG). The static output of FOG is a random project and it has more random noise when as the inertial navigation sensor, which will affect the measurement accuracy. It is an efficient method to reduce the random drift and improve the accuracy by modeling and compensation from the output of FOG. According to the characteristic of fiber optic gyro, the random drift model is studied. Using the time series method, the constant component of the random noise original data is extracted. After stationarity and normality tests, a normal random process is acquired. Based on this, the model is established using the recursive least squares, and then the model is applied to the normal Kalman and adaptive Kalman, finally the data is process with the filter. After experimental verification, the noise variance was reduced after filtering, and the effect is obvious.

Paper Details

Date Published: 8 October 2015
PDF: 6 pages
Proc. SPIE 9679, AOPC 2015: Optical Fiber Sensors and Applications, 96790J (8 October 2015); doi: 10.1117/12.2199345
Show Author Affiliations
Yun-Peng Tian, Xi'an Institute of Optics and Precision Mechanics (China)
Univ. of Chinese Academy of Sciences (China)
Xiao-Jun Yang, Xi'an Institute of Optics and Precision Mechanics (China)
Yun-Zeng Guo, Xi'an Institute of Optics and Precision Mechanics (China)
Feng Liu, Xi'an Institute of Optics and Precision Mechanics (China)


Published in SPIE Proceedings Vol. 9679:
AOPC 2015: Optical Fiber Sensors and Applications
Yanbiao Liao; Weixu Zhang; Desheng Jiang; Wei Wang; Gilberto Brambilla, Editor(s)

© SPIE. Terms of Use
Back to Top