Share Email Print
cover

Proceedings Paper

A novel method of wide searching scope and fast searching speed for image block matching
Author(s): Fei Yu; Chao Li; Qiang Mei; Zhe Lin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

When the image matching method is used for motion estimation, the performance parameters like searching scope, searching speed, accuracy and robustness of the method normally are significant and need enhancement. In this paper, a novel method of block matching containing the wide range image block matching strategy and the strategy of multi-start points and parallel searching are presented. In the wide range matching strategy, the size of template block and searching block are same. And the average value of cumulative results by pixels in calculation is taken to ensure matching parameters can accurately represent the matching degree. In the strategy of multi-start points and parallel searching, the way of choosing starting points evenly is presented based on the characteristic of the block matching search, and the adaptive conditions and adaptive schedule is established based on the searching region. In the processing of iteration, the new strategy can not only adapt to the solution that lead the objective to the correct direction, but also adapt to the solution that have a little offset comparing with the objective. Therefore the multi-start points and parallel searching algorithm can be easy to keep from the trap of local minima effectively. The image processing system based on the DSP chip of TMS320C6415 is used to make the experiment for the video image stabilization. The results of experiment show that, the application of two methods can improve the range of motion estimation and reduce the searching computation.

Paper Details

Date Published: 8 October 2015
PDF: 6 pages
Proc. SPIE 9678, AOPC 2015: Telescope and Space Optical Instrumentation, 96780F (8 October 2015); doi: 10.1117/12.2197955
Show Author Affiliations
Fei Yu, Beijing Institute of Space Mechanics and Electricity (China)
Chao Li, Beijing Institute of Space Mechanics and Electricity (China)
Qiang Mei, Beijing Institute of Space Mechanics and Electricity (China)
Zhe Lin, Beijing Institute of Space Mechanics and Electricity (China)


Published in SPIE Proceedings Vol. 9678:
AOPC 2015: Telescope and Space Optical Instrumentation
Bin Xiangli; Dae Wook Kim; Suijian Xue, Editor(s)

© SPIE. Terms of Use
Back to Top