Share Email Print
cover

Proceedings Paper

Advanced repair solution of clear defects on HTPSM by using nanomachining tool
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects.

Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process.

In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.

Paper Details

Date Published: 23 October 2015
PDF: 7 pages
Proc. SPIE 9635, Photomask Technology 2015, 96351J (23 October 2015); doi: 10.1117/12.2196941
Show Author Affiliations
Hyemi Lee, SK Hynix, Inc. (Korea, Republic of)
Munsik Kim, SK Hynix, Inc. (Korea, Republic of)
Hoyong Jung, SK Hynix, Inc. (Korea, Republic of)
Sangpyo Kim, SK Hynix, Inc. (Korea, Republic of)
Donggyu Yim, SK Hynix, Inc. (Korea, Republic of)


Published in SPIE Proceedings Vol. 9635:
Photomask Technology 2015
Naoya Hayashi, Editor(s)

© SPIE. Terms of Use
Back to Top