Share Email Print

Proceedings Paper

Advances in associated-particle neutron probe diagnostics for substance detection
Author(s): Edgar A. Rhodes; Charles E. Dickerman; Manfred Frey
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

Paper Details

Date Published: 15 September 1995
PDF: 12 pages
Proc. SPIE 2511, Law Enforcement Technologies: Identification Technologies and Traffic Safety, (15 September 1995); doi: 10.1117/12.219583
Show Author Affiliations
Edgar A. Rhodes, Argonne National Lab. (United States)
Charles E. Dickerman, Argonne National Lab. (United States)
Manfred Frey, MF Physics Corp. (United States)

Published in SPIE Proceedings Vol. 2511:
Law Enforcement Technologies: Identification Technologies and Traffic Safety
Bernard Dubuisson; Geoffrey L. Harding, Editor(s)

© SPIE. Terms of Use
Back to Top