Share Email Print

Proceedings Paper

Neural network algorithms for retrieval of harmful algal blooms in the west Florida shelf from VIIRS satellite observations and comparisons with other techniques, without the need for a fluorescence channel
Author(s): A. El-habashi; S. Ahmed
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

New approaches are described that use of the Ocean Color Remote Sensing Reflectance readings (OC Rrs) available from the existing Visible Infrared Imaging Radiometer Suite (VIIRS) bands to detect and retrieve Karenia brevis (KB) Harmful Algal Blooms (HABs) that frequently plague the coasts of the West Florida Shelf (WFS). Unfortunately, VIIRS, unlike MODIS, does not have a 678 nm channel to detect Chlorophyll fluorescence, which is used with MODIS in the normalized fluorescence height (nFLH) algorithm which has been shown to help in effectively detecting and tracking KB HABs. We present here the use of neural network (NN) algorithms for KB HABS retrievals in the WFS. These NNs, previously reported by us, were trained, using a wide range of suitably parametrized synthetic data typical of coastal waters, to form a multiband inversion algorithm which models the relationship between Rrs values at the 486, 551 and 671nm VIIRS bands against the values of phytoplankton absorption (aph), CDOM absorption (ag), non-algal particles (NAP) absorption (aNAP) and the particulate backscattering bbp coefficients, all at 443nm, and permits retrievals of these parameters. We use the NN to retrieve aph443 in the WFS. The retrieved aph443 values are then filtered by applying known limiting conditions on minimum Chlorophyll concentration [Chla] and low backscatter properties associated with KB HABS in the WFS, thereby identifying, delineating and quantifying the aph443 values, and hence [Chl] concentrations representing KB HABS. Comparisons with in-situ measurements and other techniques including MODIS nFLH confirm the viability of both the NN retrievals and the filtering approaches devised.

Paper Details

Date Published: 14 October 2015
PDF: 12 pages
Proc. SPIE 9638, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2015, 96380B (14 October 2015); doi: 10.1117/12.2195339
Show Author Affiliations
A. El-habashi, The City College of New York (United States)
S. Ahmed, The City College of New York (United States)

Published in SPIE Proceedings Vol. 9638:
Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2015
Charles R. Bostater; Stelios P. Mertikas; Xavier Neyt, Editor(s)

© SPIE. Terms of Use
Back to Top