Share Email Print
cover

Proceedings Paper

A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

Paper Details

Date Published: 15 October 2015
PDF: 10 pages
Proc. SPIE 9643, Image and Signal Processing for Remote Sensing XXI, 96431S (15 October 2015); doi: 10.1117/12.2194427
Show Author Affiliations
Zhipeng Deng, National Univ. of Defense Technology (China)
Lin Lei, National Univ. of Defense Technology (China)
Shilin Zhou, National Univ. of Defense Technology (China)


Published in SPIE Proceedings Vol. 9643:
Image and Signal Processing for Remote Sensing XXI
Lorenzo Bruzzone, Editor(s)

© SPIE. Terms of Use
Back to Top