Share Email Print

Proceedings Paper

CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An analysis of radiation, kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The gas flow conservation equations are coupled to the equations for DPAL kinetics and to the Beer-Lambert equations for pump and laser beams propagation. The DPAL kinetic processes in the Cs/CH4 (K/He) gas mixtures considered involve the three low energy levels, (1) n2S1/2, (2) n2P3/2 and (3) n2P1/2 (where n=4,6 for K and Cs, respectively), three excited alkali states and two alkali ionic states. Using the CFD model, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped CW and pulsed Cs and K DPALs. The DPAL power and medium temperature were calculated as a function of pump power and pump pulse duration. The CFD model results were compared to experimental results of Cs and K DPALs.

Paper Details

Date Published: 13 October 2015
PDF: 10 pages
Proc. SPIE 9650, Technologies for Optical Countermeasures XII; and High-Power Lasers 2015: Technology and Systems, 96500C (13 October 2015); doi: 10.1117/12.2193879
Show Author Affiliations
Karol Waichman, Ben-Gurion Univ. of the Negev (Israel)
Boris D. Barmashenko, Ben-Gurion Univ. of the Negev (Israel)
Salman Rosenwaks, Ben-Gurion Univ. of the Negev (Israel)

Published in SPIE Proceedings Vol. 9650:
Technologies for Optical Countermeasures XII; and High-Power Lasers 2015: Technology and Systems
David H. Titterton; Harro Ackermann; Willy L. Bohn; Robert J. Grasso; Mark A. Richardson, Editor(s)

© SPIE. Terms of Use
Back to Top