Share Email Print

Proceedings Paper

Fast evaluation of surface sensitivity on ghost
Author(s): Beate Boehme
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Real optical systems are often suffering from false light caused by ghosts. In particular single reflections are critical in applications like reflected light illumination microscopy or confocal systems. The degradations of performance can be bright spots in the image or contrast, signal to noise or dynamic range reduction. Thus in these systems the suppression of first order reflections is important. State of the art optical design software supports ray trace based ghost image analysis. The automatic generation of reflex light paths is provided, but for systems with a large number of surfaces the analysis of all ghost light paths is time-consuming. Conventional Monte Carlo based non sequential ray trace sums up the reflections of all surfaces simultaneously. To achieve high accuracy a huge number of rays is necessary, what results in long computational time, especially if the distinction of surface influences needs multiple calculations. In this paper a fast method is proposed for the ranking of ghosts. It was developed for single reflections in centered optical systems. For each surface the ghost light path is calculated with paraxial and real ray trace. The ghost diameter and the corresponding illumination NA are calculated. Usually the distance of the reflex focus to the image is used as criterion to access the importance of a ghost. Here we use the power of the ghost ray bundle. It is compared with the signal strength and listed for all surfaces generating a ghost. So in one step a surface contribution of reflex powers as well as an estimation of total flux of reflected light is obtained. Due to the fact, that only a few rays have to be calculated, the method is rather fast. The accuracy can be estimated by comparison of paraxial and marginal ray trace. In the proposed method, some assumptions and approximations are made. They are assessed in respect to some practical examples, and by comparison with full brute force non-sequential ray trace. The usefulness of the fast tool is evaluated.

Paper Details

Date Published: 23 September 2015
PDF: 9 pages
Proc. SPIE 9626, Optical Systems Design 2015: Optical Design and Engineering VI, 96260O (23 September 2015); doi: 10.1117/12.2191509
Show Author Affiliations
Beate Boehme, Carl Zeiss AG (Germany)

Published in SPIE Proceedings Vol. 9626:
Optical Systems Design 2015: Optical Design and Engineering VI
Laurent Mazuray; Rolf Wartmann; Andrew P. Wood, Editor(s)

© SPIE. Terms of Use
Back to Top