Share Email Print
cover

Proceedings Paper

Narrow-linewidth tunable laser working at 633 nm suitable for industrial interferometry
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Semiconductor lasers found a foothold in many fields of human activities, mainly thanks to its small size, low cost and high energy efficiency. Recent methods for accurate distance measurement in industrial practice use principles of laser interferometry, which are based on lasers operating in the visible spectrum. When the laser beam is visible the alignment of the industrial interferometer makes the measuring process easier. Traditional lasers for these purposes for many decades - HeNe gas laser - have superb coherence properties but small tunable range. On the other hand laser diodes are very useful lasers but only if the active layer of the semiconductor equips with a passive selective element that will increase the quality of their own resonator and also prevents the structure of its higher longitudinal modes. The main aim of the work is a design of the laser source based on a new commercial available laser diode with Distributed Bragg Reflector structure, butterfly package and fibre coupled output. The ultra-low noise injection current source, stable temperature controller and supply electronic equipment were developed with us and experimentally tested with this laser for the best performances required of the industrial interferometry field. The work also performs a setup for frequency noise properties investigation with an unbalanced fibre based Mach-Zehnder interferometer and 10 m long fibre spool inserted in the reference arm. The work presents the way to developing the narrow-linewidth operation the DBR laser with the wide tunable range up to more than 1 nm of the operation wavelength at the same time. Both capabilities predetermine this complex setup for the industrial interferometry application as they are the long distance surveying or absolute scale interferometry.

Paper Details

Date Published: 22 June 2015
PDF: 7 pages
Proc. SPIE 9525, Optical Measurement Systems for Industrial Inspection IX, 95254N (22 June 2015); doi: 10.1117/12.2190748
Show Author Affiliations
Tuan Pham Minh, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)
Václav Hucl, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)
Martin Čížek, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)
Břetislav Mikel, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)
Jan Hrabina, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)
Šimon Řeřucha, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)
Ondřej Číp, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)
Josef Lazar, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)


Published in SPIE Proceedings Vol. 9525:
Optical Measurement Systems for Industrial Inspection IX
Peter Lehmann; Wolfgang Osten; Armando Albertazzi Gonçalves, Editor(s)

© SPIE. Terms of Use
Back to Top