Share Email Print
cover

Proceedings Paper

GPU-assisted real-time three dimensional shape measurement by speckle-embedded fringe
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper presents a novel two-frame method of fringe projection for real-time, accurate and unambiguous threedimensional shape measurement. One of the used frames is a speckle pattern and the other one is a composite image which is fused by that speckle image and sinusoidal fringes. The sinusoidal component is used to retrieve the wrapped phase map. The frame of the speckle is employed to remove the phase ambiguity for the reconstruction of the absolute depth. Compared with traditional multi-frequency phase-shifting methods, the proposed scheme is of much lower sensitivity to movements as the result of the reduced number of used patterns. Moreover, its measuring precision is very close to that of the phase-shifting method, which indicates the method is of high accuracy. To process data in real time, a CUDA-enabled Graphics Processing Unit (GPU) is introduced to accelerate the computations of phase and depth. With our system, measurements can be performed at 21 frames per second with a resolution of 307K points per frame.

Paper Details

Date Published: 17 July 2015
PDF: 6 pages
Proc. SPIE 9524, International Conference on Optical and Photonic Engineering (icOPEN 2015), 95242G (17 July 2015); doi: 10.1117/12.2189691
Show Author Affiliations
Shijie Feng, Nanjing Univ. of Science and Technology (China)
Qian Chen, Nanjing Univ. of Science and Technology (China)
Chao Zuo, Nanjing Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 9524:
International Conference on Optical and Photonic Engineering (icOPEN 2015)
Anand K. Asundi; Yu Fu, Editor(s)

© SPIE. Terms of Use
Back to Top