Share Email Print

Proceedings Paper

Adaptive OFDM waveform design for spatio-temporal-sparsity exploited STAP radar
Author(s): Satyabrata Sen; Jacob Barhen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of- freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully-adaptive OFDM-STAP, we propose a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain, as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we propose to optimally design the transmit OFDM signals by maximizing the output signal- to-interference-plus-noise ratio (SINR) in order to improve the STAP-performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity- based technique and adaptive waveform design.

Paper Details

Date Published: 21 May 2015
PDF: 9 pages
Proc. SPIE 9461, Radar Sensor Technology XIX; and Active and Passive Signatures VI, 946123 (21 May 2015); doi: 10.1117/12.2189525
Show Author Affiliations
Satyabrata Sen, Oak Ridge National Lab. (United States)
Jacob Barhen, Oak Ridge National Lab. (United States)

Published in SPIE Proceedings Vol. 9461:
Radar Sensor Technology XIX; and Active and Passive Signatures VI
G. Charmaine Gilbreath; Kenneth I. Ranney; Armin Doerry; Chadwick Todd Hawley, Editor(s)

© SPIE. Terms of Use
Back to Top