Share Email Print
cover

Proceedings Paper

High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

Paper Details

Date Published: 4 September 2015
PDF: 12 pages
Proc. SPIE 9603, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 960314 (4 September 2015); doi: 10.1117/12.2188525
Show Author Affiliations
Ralf K. Heilmann, MIT Kavli Institute for Astrophysics and Space Research (United States)
Alexander R. Bruccoleri, Izentis, LLC (United States)
Mark L. Schattenburg, MIT Kavli Institute for Astrophysics and Space Research (United States)


Published in SPIE Proceedings Vol. 9603:
Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII
Stephen L. O'Dell; Giovanni Pareschi, Editor(s)

© SPIE. Terms of Use
Back to Top