Share Email Print
cover

Proceedings Paper

Fabrication of water-stable organic transistors using crystalline rubrene thin-film and polymer-treated dielectric (Presentation Recording)
Author(s): Jaejoon Kim; Hyoek Moo Lee; Sung Oh Cho
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For the real application of organic electronics, stable operation of electronic devices in humid or aqueous condition is essential and desirable. However, most of organic semiconductors were very weak to the oxygen or water and especially, cannot be operated well in aqueous condition without an encapsulation. Here, we present water-stable organic thin-film transistors with highly crystallized rubrene and polymer-treated dielectrics. These high water-stability could be achieved by two factors. First, rubrene, a well-known p-type semiconducting material, showed high air and water stability after the crystallization of ‘abrupt heating’. By the fabrication and aqueous operation of rubrene thin film transistor, we could show the water stability of crystallized thin-film rubrene. Such high environmental stability is attributed to the fact that rubrene has comparatively low HOMO level of -5.4 eV and large bandgap energy of 3.2 eV and that the rubrene thin-film is composed of well-interconnected orthorhombic rubrene crystals. Second, the polymer-treatment of dielectrics can enhance long-term water stability of fabricated rubrene thin-film transistor. By the complete immersion test of transistors, we could characterize the increase of water-stability after the treatment of dielectrics with cross-linked polymer. For this purpose, polystyrene is cross-linked by electron irradiation and the water penetration into semiconductor/dielectric interface was decreased due to the decreased surface energy of polymer dielectric compared to the SiO₂. The fabricated rubrene thin-film transistors showed a field-effect mobility of ~0.5 cm2V-1s-1 and long-term stability under ambient and aqueous conditions. Also, we investigated their potential applications in chemical or bio sensors.

Paper Details

Date Published: 5 October 2015
PDF: 1 pages
Proc. SPIE 9568, Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII, 95680F (5 October 2015); doi: 10.1117/12.2187959
Show Author Affiliations
Jaejoon Kim, KAIST (Korea, Republic of)
Hyoek Moo Lee, LG Chem, Ltd. (Korea, Republic of)
Sung Oh Cho, KAIST (Korea, Republic of)


Published in SPIE Proceedings Vol. 9568:
Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII
Ioannis Kymissis; Iain McCulloch; Ruth Shinar; Oana D. Jurchescu; Luisa Torsi, Editor(s)

© SPIE. Terms of Use
Back to Top