Share Email Print

Proceedings Paper

High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)
Author(s): Yan Zhou; Zhenan Bao
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as crystallinity, surface roughness, charge carrier mobility, and absorptions of the polymers blends are found irrelevant to the performance of these all polymer solar cells. This work demonstrates that a better understanding of tuning polymer phase separation domain size provides an important path towards high performance, all-polymer solar cells. The use of polymer side-chain engineering provides an effective molecular engineering approach that may be combined with additional processing parameter control to further elevate the performance of all-polymer solar cells. We obtained a record PCE of 4.8% (avarage from 20 devices), with an average JSC of 9.8 mA cm-2. The highest PCE shoots to 5.1%, with JSC as high as 10.2 mA cm-2, and VOC of 1.02 V. It is the highest performance ever published for an all-polymer solar cell.4 1. Li, G.; Zhu, R.; Yang, Y., Nat. Photon. 2012, 6 , 153-161. 2. (a) Nelson, J., Mater. Today 2011, 14 , 462-470; (b) Lin, Y.; Li, Y.; Zhan, X., Chem. Soc. Rev. 2012, 41, 4245-4272; (c) Chen, J.; Cao, Y., Acc. Chem. Res. 2009, 42, 1709-1718. 3. Sonar, P.; Fong Lim, J. P.; Chan, K. L., Energy Environ. Sci. 2011, 4, 1558. 4. Facchetti, A., Mater. Today 2013, 16 , 123-132.

Paper Details

Date Published: 5 October 2015
PDF: 1 pages
Proc. SPIE 9567, Organic Photovoltaics XVI, 95670V (5 October 2015); doi: 10.1117/12.2187663
Show Author Affiliations
Yan Zhou, Stanford Univ. (United States)
Zhenan Bao, Stanford Univ. (United States)

Published in SPIE Proceedings Vol. 9567:
Organic Photovoltaics XVI
Zakya H. Kafafi; Paul A. Lane; Ifor D. W. Samuel, Editor(s)

© SPIE. Terms of Use
Back to Top