Share Email Print
cover

Proceedings Paper

Organic blend semiconductors and transistors with hole mobility exceeding 10 cm2/Vs (Presentation Recording)
Author(s): Alexandra F. Paterson; Thomas D. Anthopoulos
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Plastic electronics that can be manufactured using solution-based methods are the subject of great research interest due to their potential for low-cost, large-area electronic applications. The interest in this field has led to considerable research and subsequent advances in device performance. To this end solution-processed organic thin-film transistors (OTFTs) have shown impressive improvements in recent years through the increasing values of charge carrier mobility. Here we report the development of next generation organic blend materials for OTFTs with hole mobilities of 10 cm2/Vs. These high performance devices have been achieved using a novel semiconducting blend system comprising of an amorphous-like conjugated polymer and a high mobility small molecule. The combination of a highly crystalline small molecule with the polymer binder aids the formation of uniform films as well as enables an element of control over the nucleation and growth of the small molecule. The polymer binders investigated belongs to the family of indacenodithiophene-based copolymers which are renowned for their high carrier mobilities regardless of their apparent structural disorder. The addition of the polymer with carefully chosen small molecules is found to further increase the hole mobility of the resulting blend OTFT to over 10 cm2/Vs. These organic devices provide an interesting insight into this rather complex blend system, highlighting the correlation between the morphology developed following solution processing and device performance, as well as exploring the role of each of the two components in the blend in terms of their contribution to charge transport.

Paper Details

Date Published: 5 October 2015
PDF: 1 pages
Proc. SPIE 9568, Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII, 95680W (5 October 2015); doi: 10.1117/12.2187079
Show Author Affiliations
Alexandra F. Paterson, Imperial College London (United Kingdom)
Thomas D. Anthopoulos, Imperial College London (United Kingdom)


Published in SPIE Proceedings Vol. 9568:
Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII
Ioannis Kymissis; Ruth Shinar; Luisa Torsi; Iain McCulloch; Oana D. Jurchescu, Editor(s)

© SPIE. Terms of Use
Back to Top