Share Email Print
cover

Proceedings Paper

High-power radial klystron oscillator
Author(s): Moe Joseph Arman
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The advantages of the radial klystron amplifier over the conventional klystron amplifier have been reported by Arman et al. Briefly, the radial structure of this design allows for much smaller impedances and thus higher power, the beam-cavity coupling is stronger because the beam travels inside the cavity, and the source is much more compact because there is no need for external magnetic fields. Here I report on possible advantages of the radial klystron oscillator over the radial klystron amplifier. The amplifying nature of certain HPM sources is often mandated by the requirement for synchronization and phase-locking of a number of sources in specific applications. In situations where amplification is solely adhered to for the purpose of achieveing higher powers, the oscillator will be a better choice if a mechanism can be found to grow the desired mode at the required frequency. By switching to the oscillator mode there will be no need for priming the cavity or maintaining the phase. This simplifies the design and reduces the operational and maintenance cost of the source. Here we report that an oscillator version of the radial klystron is possible and in fact more suitable for many applications. The mechanism for exciting and growing the mode will be transit-time effects thus providing all the beneficial features of the transit-time oscillators. The complications due to the presence of thin foils in the radial design still persist and will be dealt with in subsequent works. Numberical simulations using the PIC codes MAGIC and SOS indicate the radial klystron oscillator is a viable and efficient means of rf generation.

Paper Details

Date Published: 8 September 1995
PDF: 11 pages
Proc. SPIE 2557, Intense Microwave Pulses III, (8 September 1995); doi: 10.1117/12.218562
Show Author Affiliations
Moe Joseph Arman, Air Force Phillips Lab. (United States)


Published in SPIE Proceedings Vol. 2557:
Intense Microwave Pulses III
Howard E. Brandt, Editor(s)

© SPIE. Terms of Use
Back to Top