Share Email Print
cover

Proceedings Paper

Narrow high-power microwave pulses from a free-electron laser
Author(s): Thomas C. Marshall; Ting-Bin Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have explored high power microwave ((lambda) equals 1.5 mm) pulse amplification along a tapered undulator FEL using the 1D Compton FEL equations with slippage. For an appropriate taper, sideband instabilities are suppressed and a short (approximately 50 psec) Gaussian pulse will propagate in a nearly self-similar way as it grows in power, slipping through a much longer electron pulse (beam energy, 750kV; current, 100A; radius equals 2 mm; length equals 200 radiation periods). This is in contrast to the example of pulse propagation in a constant parameter undulator, where the Gaussian pulse breaks up into irregularities identified with sidebanding. Variation of initial pulse width shows convergence to a 50 psec wide output pulse. Because of the slippage of the radiation pulse through the electron pulse, the peak microwave pulse intensity, approximately 3GW/cm2, is about three times the kinetic energy density of the electron beam.

Paper Details

Date Published: 8 September 1995
PDF: 6 pages
Proc. SPIE 2557, Intense Microwave Pulses III, (8 September 1995); doi: 10.1117/12.218557
Show Author Affiliations
Thomas C. Marshall, Columbia Univ. (United States)
Ting-Bin Zhang, Columbia Univ. (United States)


Published in SPIE Proceedings Vol. 2557:
Intense Microwave Pulses III
Howard E. Brandt, Editor(s)

© SPIE. Terms of Use
Back to Top