Share Email Print
cover

Proceedings Paper

Seismic imaging operators derived from chained stacking integrals
Author(s): Martin Tygel; Peter Hubral; Joerg Schleicher
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Given a 3D seismic record for an arbitrary measurement configuration and assuming a laterally inhomogeneous, isotropic macro-velocity model, a unifying approach to amplitude- preserving seismic reflection imaging is provided. It consists of (a) a Kirchhoff-type weighted diffraction stack to transform (migrate) the seismic data from the (time-domain) record space into the (depth-domain) image space, and of (b) a weighted isochrone stack to transform (demigrate) the migrated seismic image from the image space back into the record space. Both the diffraction and isochrone stacks can be applied in sequence for different measurement configurations, velocity models, or elementary waves to permit a variety of amplitude- preserving image transformations. These include, e.g., (a) the amplitude-preserving transformation of a 3D constant-offset record into a 3D zero-offset record, which is known as a migration to zero offset, (b) a dip-moveout correction, or (c) the transformation (here referred to as a remigration) of a 3D depth-migrated image directly in the image space into another one for a different macro-velocity model. By analytically chaining the two stacking integrals, each image transformation can be achieved with only one single weighted stack.

Paper Details

Date Published: 1 September 1995
PDF: 12 pages
Proc. SPIE 2571, Mathematical Methods in Geophysical Imaging III, (1 September 1995); doi: 10.1117/12.218500
Show Author Affiliations
Martin Tygel, Univ. Estadual de Campinas (Brazil)
Peter Hubral, Univ. Karlsruhe (Germany)
Joerg Schleicher, Univ. Karlsruhe (Germany)


Published in SPIE Proceedings Vol. 2571:
Mathematical Methods in Geophysical Imaging III
Siamak Hassanzadeh, Editor(s)

© SPIE. Terms of Use
Back to Top