Share Email Print

Proceedings Paper

Hydro-gravitational-dynamics cosmology is crucial to astrobiology and the biological big bang at two million years
Author(s): Carl H. Gibson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Hydro-Gravitational-Dynamics (HGD) cosmology predicts that the 1012 s (30 Kyr) H-He4 plasma protogalaxies become, by viscous fragmentation, proto-globular-star-cluster PGC clumps of a trillion small planets, at the 1013 s transition to gas. Larger planets and stars result from mergers of these hot 3000 K hydrogen planets in the PGCs. Stardust oxides of life chemicals C, N, O, Fe, Si seed the planets when the stars explode as supernovae. Hydrogen reduces the metal oxides and silicates to metal and rocky planet cores with massive hot water oceans at critical water temperature 647 K in which organic chemistry and life can develop. Because information is continually exchanged between the merging planets, they form a cosmic soup. The biological big bang occurs between 2 Myr when liquid water rains hot deep oceans in the cooling cosmos, and 8 Myr when the oceans freeze6. Thus, HGD cosmology explains the Hoyle/Wickramasinghe concept of cometary panspermia by giving a vast, hot, nourishing, cosmological primordial soup for abiogenesis, and the means for transmitting the resulting life forms and their evolving RNA/DNA mechanisms widely throughout the universe. A primordial astrophysical basis is provided for astrobiology by HGD cosmology. Concordance ΛCDMHC cosmology is rendered obsolete by the observation of complex life on Earth.

Paper Details

Date Published: 21 September 2015
PDF: 24 pages
Proc. SPIE 9606, Instruments, Methods, and Missions for Astrobiology XVII, 96060T (21 September 2015); doi: 10.1117/12.2184524
Show Author Affiliations
Carl H. Gibson, Univ. of California, San Diego (United States)

Published in SPIE Proceedings Vol. 9606:
Instruments, Methods, and Missions for Astrobiology XVII
Richard B. Hoover; Gilbert V. Levin; Alexei Yu. Rozanov; Nalin C. Wickramasinghe, Editor(s)

© SPIE. Terms of Use
Back to Top