Share Email Print
cover

Proceedings Paper

The threshold sensitivity of the molecular condensation nuclei detector
Author(s): Vladimir D. Kuptsov; Vadim Ya. Katelevsky; Vladimir P. Valyukhov
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Molecular condensation nuclei (MCN) method is used in production engineering and process monitoring and relates to optical metrology methods of measuring the concentrations of various contaminants in the environment. Ultra high sensitivity of MCN method to a class of substances is determined by measuring the optical scattering aerosol particles, at the centers of which are located the detectable impurities molecules. This article investigates the influence of MCN manifestations coefficient (ratio of the concentration of aerosol particles to the concentration of molecules detectable impurities) on the sensitivity of the MCN detector. The MCN method is based on the application of various physicochemical processes to the flow of a gas containing impurities. As a result of these processes aerosol particle that are about 106 times larger than the original molecule of the impurity are produced. The ability of the aerosol particle to scatter incident light also increases ~1014 ÷1016 times compared with the original molecule and the aerosol particle with the molecule of the impurity in the center is easily detected by light scattering inside a photometer. By measuring of the light scattering intensity is determined concentration of chemical impurities in the air. An application nephelometric optical metrology scheme of light scattering by aerosol particles ensures stable operation of reliable and flexible measuring systems. Light scattering by aerosol particles is calculated on the basis of the Mie’s theory as aerosol particle sizes comparable to the wavelength of the optical radiation. The experimental results are shown for detectable impurities of metal carbonyls. Gas analyzers based on the MCN method find application in industries with the possibility of highly toxic emissions into the atmosphere (carbonyl technology of metal coatings and products, destruction of chemical weapons, etc.), during storage and transportation of toxic substances, as well as in the inspection of large-scale objects. There are some perspective areas of use MCN detector: prevention of illegal use of dangerous substances, revealing of their origin and leakage paths by means of marking with special non-radioactive chemical compounds; investigation of large-scale atmospheric circulation with the help of marking substances; nondestructive inspection for highly efficient filters with indicating agent concentration and for the inspection of the devices of high level tightness (heat-exchangers of fast nuclear reactors).

Paper Details

Date Published: 22 June 2015
PDF: 8 pages
Proc. SPIE 9525, Optical Measurement Systems for Industrial Inspection IX, 95252N (22 June 2015); doi: 10.1117/12.2184135
Show Author Affiliations
Vladimir D. Kuptsov, Saint-Petersburg State Polytechnical Univ. (Russian Federation)
Vadim Ya. Katelevsky, Neorganika (Russian Federation)
Vladimir P. Valyukhov, Saint-Petersburg State Polytechnical Univ. (Russian Federation)


Published in SPIE Proceedings Vol. 9525:
Optical Measurement Systems for Industrial Inspection IX
Peter Lehmann; Wolfgang Osten; Armando Albertazzi Gonçalves, Editor(s)

© SPIE. Terms of Use
Back to Top