Share Email Print
cover

Proceedings Paper

Stiffness modeling of flexible suspension structure for displacement measurement probing sensors
Author(s): Junning Cui; Xingyuan Bian; Tao Sun; Leilei Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In order to solve the problem of performance analysis and optimal design of flexible suspension structure for displacement measurement probing sensors, a novel theoretical model of stiffness with high accuracy is proposed. Both displacements constraint and angle constraint of elastic diaphragms are considered during modeling, and a stiffness equation including all dimensional parameters and material characteristics of elastic diaphragms is obtained. Thus the stiffness of the flexible suspension structure is modeled theoretically and accurately, and the influence on performance of probing sensors by each parameter can be analyzed. Simulations results show that the theoretical model of stiffness proposed is more accurate than existing models, and performance analysis and optimal design of probing sensors can be carried out based on it.

Paper Details

Date Published: 6 March 2015
PDF: 10 pages
Proc. SPIE 9446, Ninth International Symposium on Precision Engineering Measurement and Instrumentation, 944658 (6 March 2015); doi: 10.1117/12.2183076
Show Author Affiliations
Junning Cui, Harbin Institute of Technology (China)
Xingyuan Bian, Harbin Institute of Technology (China)
Tao Sun, Harbin Institute of Technology (China)
Leilei Li, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 9446:
Ninth International Symposium on Precision Engineering Measurement and Instrumentation
Junning Cui; Jiubin Tan; Xianfang Wen, Editor(s)

© SPIE. Terms of Use
Back to Top