Share Email Print
cover

Proceedings Paper

Processing of multiport CCD video signals at very high frame rates
Author(s): Bojan T. Turko; George J. Yates; Nicholas S. P. King
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Rates exceeding 1000 frames/s can be achieved with multiport CCD state-of-art video sensors. In order to provide sufficient spatial resolution, sensor configurations of 512 X 512 pixels are typical. Image area is divided into segments with individual video ports. Each port includes a photocharge sensitive amplifier, typically comprising sample/hold and charge reset circuits. Some amplifiers are even provided with a double correlated sample circuit for improving the signal/noise ratio. Frame rates are proportional to the number of ports, since the individual sensor segments are run in parallel. Unfortunately, the amount of external circuitry required for signal processing increases accordingly, 16-port sensors are a quite common configuration. Cameras with even higher number of ports are prohibitively expensive. Therefore, in order to achieve very high frame readout rates with a moderate number of ports, the sensor's charge transport clock frequencies must be increased to the limit. Horizontal charge transfer frequencies exceeding 30 MHz have been achieved. The quality of the video signal deteriorates with frequency due to bandwidth limitation of the photocharge detecting amplifier. Its sample/hold and double correlated sample circuits are useless at such rates. Methods and circuits for the processing of video signals under such conditions are described. The circuits include wide bandwidth video buffer amplifiers/level translator/line drivers, fast peak stretchers, 10-bit resolution (or more) A/D converters and fiber optic data links to a remote mass digital data storage and processors. Also, the circuits must satisfy a number of practical conditions (size, power dissipation, cost) in order to make such camera useful in applications where space is limited and multiple head high frame rate cameras are required.

Paper Details

Date Published: 1 September 1995
PDF: 5 pages
Proc. SPIE 2549, Ultrahigh- and High-Speed Photography, Videography, and Photonics '95, (1 September 1995); doi: 10.1117/12.218305
Show Author Affiliations
Bojan T. Turko, Lawrence Berkeley Lab. (United States)
George J. Yates, Los Alamos National Lab. (United States)
Nicholas S. P. King, Los Alamos National Lab. (United States)


Published in SPIE Proceedings Vol. 2549:
Ultrahigh- and High-Speed Photography, Videography, and Photonics '95
George A. Kyrala; Donald R. Snyder, Editor(s)

© SPIE. Terms of Use
Back to Top