Share Email Print
cover

Proceedings Paper

Working-point control technique for the homodyne interferometry in hydrophone calibration
Author(s): Ping Yang; Guangzhen Xing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The stabilization of a homodyne type Michelson interferometer for calibrating the high frequency hydrophone is presented in this article. For the detection of the ultrasonic field, a 5 um thickness pellicle was inserted in water moving in sympathy with the ultrasonic wave. To ensure high signal to noise ratio at high frequencies, a 5 MHz focusing transducer was driven by high voltage and harmonics of the shocked ultrasonic field could be activated. Nevertheless, the homodyne interferometer suffered from the drawback of signal fading caused by the low frequency noise in environment, including acoustic noise and water surface agitation. Direct Current Phase Tracking was utilized to maintain the quadrature working point for the interferometer. Most of environmental noises could be effectively compensated while stabilization was maintained. A piezoelectric actuator supporting the reference mirror was utilized as the stabilizing element whose output was frequency independent over the low frequency disturbances, usually below 200 Hz. The ultrasonic signal fading caused by environmental disturbances could be solved while the negative electric feedback loop was operating. The displacement and voltage output of the hydrophone under test were then processed by DFT to derive the fundamental and harmonic components. Under plane wave conditions, the ultrasonic pressure could be derived by the detected displacement with a stabilized homodyne interferometer, and the hydrophone could then be calibrated. Measurement results indicated that the hydrophone calibration system based on the active stabilization of homodyne interferometry was sound in theory and feasible in practice.

Paper Details

Date Published: 6 March 2015
PDF: 6 pages
Proc. SPIE 9446, Ninth International Symposium on Precision Engineering Measurement and Instrumentation, 94464A (6 March 2015); doi: 10.1117/12.2181947
Show Author Affiliations
Ping Yang, National Institute of Metrology (China)
Guangzhen Xing, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 9446:
Ninth International Symposium on Precision Engineering Measurement and Instrumentation
Junning Cui; Jiubin Tan; Xianfang Wen, Editor(s)

© SPIE. Terms of Use
Back to Top