Share Email Print
cover

Proceedings Paper

Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking
Author(s): Michael Bukshtab; Amit Paranjape; Marc Friedman; David Muller
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Brillouin scattering spectra of biological systems have shown to be inherently related to the intrinsic elasticity and molecular constants of tissues involved. Our approach of combining confocal microscopy and high-resolution Brillouin spectroscopy via a virtual imaging phase array enabled 10-microsecond single-pixel acquisition time without dedicated spatial filtering. Such an approach is adapted via a single-frequency fiber-coupled 780-nm wavelength laser, frequency stabilized by Rb-D2 absorption line, polarization extinction scheme, ASE filtering, heated Rb-vapor Rayleigh-scattering absorbent, and spectroscopic EMCCD camera, unified as CMS-VIPA: confocal virtual-imaging phase array microscopespectrometer. Steady strengthening of corneal bulk modulus was observed via spectral shifts of Brillouin scattering from 5.0-5.2 GHz in untreated porcine eyes to 5.7-5.9 GHz in ones cross-linked in riboflavin plus UV-A light  at 0.7-0.9 GHz level of enhancement. The cross-linking depths reaching 300400 microns were measured, as predicted by modeling. A noncontact Brillouin spectroscopic microscopy system for in-vivo corneal elasticity measurement is under development.

Paper Details

Date Published: 6 March 2015
PDF: 10 pages
Proc. SPIE 9327, Optical Elastography and Tissue Biomechanics II, 932718 (6 March 2015); doi: 10.1117/12.2181247
Show Author Affiliations
Michael Bukshtab, Avedro, Inc. (United States)
Amit Paranjape, Avedro, Inc. (United States)
Marc Friedman, Avedro, Inc. (United States)
David Muller, Avedro, Inc. (United States)


Published in SPIE Proceedings Vol. 9327:
Optical Elastography and Tissue Biomechanics II
Kirill V. Larin; David D. Sampson, Editor(s)

© SPIE. Terms of Use
Back to Top