Share Email Print
cover

Proceedings Paper

Polarization control in X-ray FELs by reverse undulator tapering
Author(s): E. A. Schneidmiller; M. V. Yurkov
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate.

Paper Details

Date Published: 12 May 2015
PDF: 10 pages
Proc. SPIE 9512, Advances in X-ray Free-Electron Lasers Instrumentation III, 951218 (12 May 2015); doi: 10.1117/12.2181224
Show Author Affiliations
E. A. Schneidmiller, Deutsches Elektronen-Synchrotron (Germany)
M. V. Yurkov, Deutsches Elektronen-Synchrotron (Germany)


Published in SPIE Proceedings Vol. 9512:
Advances in X-ray Free-Electron Lasers Instrumentation III
Sandra G. Biedron, Editor(s)

© SPIE. Terms of Use
Back to Top