Share Email Print
cover

Proceedings Paper

Statistical prediction of the atmospheric behavior for free space optical link
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The atmosphere is unstable and unpredictable environment, where are continual changes of the air refractive index. These changes cause fluctuation of optical power at the receiver site. The prediction of behavior of the atmosphere and effect of this behavior on the FSO link is very complicated or even impossible. Aim of this article is focused on statistical analysis of measured level signal RSSI of the FSO link and atmospheric properties measured by hydro-meteorological station. For measured data the statistical analysis tools were used. Next part of article is focused on determination of the linear regression model to calculate level of RSSI depending on the atmospheric properties. Two empirical equations are result for day and night time. These equations describe behavior of signal RSSI in 30 days interval. Finally, comparison of the obtained mathematical model with real measured data of RSSI was introduced for one week before and one week after the analyzed time interval.

Paper Details

Date Published: 4 September 2015
PDF: 8 pages
Proc. SPIE 9614, Laser Communication and Propagation through the Atmosphere and Oceans IV, 96140V (4 September 2015); doi: 10.1117/12.2180338
Show Author Affiliations
Lukas Hajek, VŠB-Technical Univ. of Ostrava (Czech Republic)
Jan Vitasek, VŠB-Technical Univ. of Ostrava (Czech Republic)
Ales Vanderka, VŠB-Technical Univ. of Ostrava (Czech Republic)
Jan Latal, VŠB-Technical Univ. of Ostrava (Czech Republic)
Frantisek Perecar, VŠB-Technical Univ. of Ostrava (Czech Republic)
Vladimir Vasinek, VŠB-Technical Univ. of Ostrava (Czech Republic)


Published in SPIE Proceedings Vol. 9614:
Laser Communication and Propagation through the Atmosphere and Oceans IV
Alexander M. J. van Eijk; Christopher C. Davis; Stephen M. Hammel, Editor(s)

© SPIE. Terms of Use
Back to Top