Share Email Print
cover

Proceedings Paper

Seasonal trends of ACSPO VIIRS SST product characterized by the differences in orbital overlaps for various water types
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The uncertainty of the Advanced Clear-Sky Processor for Oceans (ACSPO) Sea Surface Temperature (SST) products from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite is examined using consecutive orbital overlaps in coastal waters of the Gulf of Mexico. The overlapping region on the left and right side of the VIIRS swath at 23-35 degree latitude covers approximately 500 pixels, which occur within 100 minutes and can provide a total of 4 SST products (2 day and 2 night) per day. By assuming the ocean SST should be similar on each side of the swath in this short time period, diel changes are examined and the uncertainty of SST retrieval is determined by comparing with buoy-derived SST. The VIIRS ACSPO product from NOAA STAR was used to determine the difference in SST within the overlapping regions. These SST changes are evaluated between consecutive orbits to validate the accuracy of SST algorithms on each side of the swath at high sensor angles. The SST product differences across the swath can result from surface glint, sensor angular impacts and sensor characteristics such as half angle mirror side (HAM) and calibration. The absolute diurnal SST changes that can occur within 100 minutes are evaluated with the buoy and VIIRS-derived SST. Sensitivity of the SST to water types is evaluated by measuring diurnal differences for open ocean, shelf and coastal waters. The 100 minute VIIRS SST overlap shows the capability to monitor the diurnal ocean heating and cooling which are associated with water mass optical absorption. The seasonal trends of the difference in SST at the overlaps for these water masses were tracked on a monthly basis. The unique capability of using the same VIIRS sensor for self-characterization can provide a method to define the uncertainty of ocean products and characterize the diurnal changes for different water types.

Paper Details

Date Published: 19 May 2015
PDF: 7 pages
Proc. SPIE 9459, Ocean Sensing and Monitoring VII, 94590T (19 May 2015); doi: 10.1117/12.2179731
Show Author Affiliations
Robert Arnone, The Univ. of Southern Mississippi (United States)
Ryan Vandermeulen, The Univ. of Southern Mississippi (United States)
Alexander Ignatov, NOAA Ctr. for Satellite Application and Research (United States)
Jean François Cayula, Vencore North America (United States)


Published in SPIE Proceedings Vol. 9459:
Ocean Sensing and Monitoring VII
Weilin W. Hou; Robert A. Arnone, Editor(s)

© SPIE. Terms of Use
Back to Top