Share Email Print
cover

Proceedings Paper

Passive and electro-optic polymer photonics and InP electronics integration
Author(s): Z. Zhang; V. Katopodis; P. Groumas; A. Konczykowska; J. -Y. Dupuy; A. Beretta; A. Dede; E. Miller; J. H. Choi; P. Harati; F. Jorge; V. Nodjiadjim; R. Dinu; G. Cangini; A. Vannucci; D. Felipe; A. Maese-Novo; N. Keil; H. -G. Bach; Martin Schell; H. Avramopoulos; Ch. Kouloumentas
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

Paper Details

Date Published: 1 May 2015
PDF: 8 pages
Proc. SPIE 9516, Integrated Optics: Physics and Simulations II, 951603 (1 May 2015); doi: 10.1117/12.2179221
Show Author Affiliations
Z. Zhang, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
V. Katopodis, National Technical Univ. of Athens (Greece)
P. Groumas, National Technical Univ. of Athens (Greece)
A. Konczykowska, III-V Lab. (France)
J. -Y. Dupuy, III-V Lab. (France)
A. Beretta, LINKRA S.r.l. (Italy)
A. Dede, LINKRA S.r.l. (Italy)
E. Miller, GigOptix, Inc. (United States)
J. H. Choi, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
P. Harati, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
F. Jorge, III-V Lab. (France)
V. Nodjiadjim, III-V Lab. (France)
R. Dinu, GigOptix, Inc. (United States)
G. Cangini, GigOptix, Inc. (United States)
A. Vannucci, LINKRA S.r.l. (Italy)
D. Felipe, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
A. Maese-Novo, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
N. Keil, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
H. -G. Bach, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
Martin Schell, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
H. Avramopoulos, National Technical Univ. of Athens (Greece)
Ch. Kouloumentas, National Technical Univ. of Athens (Greece)


Published in SPIE Proceedings Vol. 9516:
Integrated Optics: Physics and Simulations II
Pavel Cheben; Jiří Čtyroký; Iñigo Molina-Fernández, Editor(s)

© SPIE. Terms of Use
Back to Top