Share Email Print
cover

Proceedings Paper

Design of the charge push-through electronics for fully implantable artificial cochlea
Author(s): Jaromir Zak; Zdenek Hadas; Daniel Dusek; Jan Pekarek; Vojtech Svatos; Ludek Janak; Jan Prasek
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The artificial cochlear implant is the only way how to get lost hearing back in some cases. Existing artificial cochlear devices use two separated parts for this purpose: a signal processing unit with transmitter and an implantable receiver with electrodes. This approach is applicable but not fully implantable. A new complex approach to design of a fully implantable artificial cochlea is described in this article.

The proposed artificial cochlea consists of many subcircuits which have to be designed in close context to reach optimal performance and the lowest power consumption. Power consumption should be decreased to a value which allows using cochlear implant as a zero-powered system. A combination of micro-mechanized diaphragm filter bank, possible energy harvesting power source and especially ultra-low power processing electronics is presented in this article. A unique technique for nerve stimulatory output signal generation is discussed. This new technique named charge push-through electronics should use the major part of energy generated by energy harvesting subcircuit for output useful signal generation with minimal undesirable current.

Mechanical parts of the subcircuits were simulated as complex electro-mechanical simulation models in ANSYS, CoventorWare, Matlab and SPICE environment. First, the real energy harvesting power source (human motion and temperature) behavior was measured. The model of this behavior was created in simulation environment and then the whole electronics simulation model for energy harvesting circuits was estimated. Next, signal processing circuits powered from energy harvesting power source were designed and simulated. The new signal processing circuits were simulated in relation to the results of complex electro mechanical diaphragm and SPICE energy harvesting power source simulation.


Paper Details

Date Published: 1 June 2015
PDF: 9 pages
Proc. SPIE 9518, Bio-MEMS and Medical Microdevices II, 95180P (1 June 2015); doi: 10.1117/12.2178987
Show Author Affiliations
Jaromir Zak, Brno Univ. of Technology (Czech Republic)
Zdenek Hadas, Brno Univ. of Technology (Czech Republic)
Daniel Dusek, Brno Univ. of Technology (Czech Republic)
Jan Pekarek, Brno Univ. of Technology (Czech Republic)
Vojtech Svatos, Brno Univ. of Technology (Czech Republic)
Ludek Janak, Brno Univ. of Technology (Czech Republic)
Jan Prasek, Brno Univ. of Technology (Czech Republic)


Published in SPIE Proceedings Vol. 9518:
Bio-MEMS and Medical Microdevices II
Sander van den Driesche, Editor(s)

© SPIE. Terms of Use
Back to Top