Share Email Print
cover

Proceedings Paper

Image denoising using ridgelet shrinkage
Author(s): Pawan Kumar; Kishore Bhurchandi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Protecting fine details and edges while denoising digital images is a challenging area of research due to changing characteristics of both, noise and signal. Denoising is used to remove noise from corrupted images but in the process fine details like weak edges and textures are hampered. In this paper we propose an algorithm based on Ridgelet transform to denoise images and protect fine details. Here we use cycle spinning on Ridgelet coefficients with soft thresholding and name the algorithm as Ridgelet Shrinkage in order to suppress noise and preserve details. The projections in Ridgelets filter out the noise while protecting the details while the ridgelet shrinkage further suppress noise. The proposed algorithm out performs the Wavelet Shrinkage and Non-local (NL) means denoising algorithms on the basis of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) numerically and visually both.

Paper Details

Date Published: 4 March 2015
PDF: 5 pages
Proc. SPIE 9443, Sixth International Conference on Graphic and Image Processing (ICGIP 2014), 94430X (4 March 2015); doi: 10.1117/12.2178701
Show Author Affiliations
Pawan Kumar, Visvesvaraya National Institute of Technology (India)
Kishore Bhurchandi, Visvesvaraya National Institute of Technology (India)


Published in SPIE Proceedings Vol. 9443:
Sixth International Conference on Graphic and Image Processing (ICGIP 2014)
Yulin Wang; Xudong Jiang; David Zhang, Editor(s)

© SPIE. Terms of Use
Back to Top