Share Email Print
cover

Proceedings Paper

Independent component analysis algorithm FPGA design to perform real-time blind source separation
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.

Paper Details

Date Published: 20 May 2015
PDF: 12 pages
Proc. SPIE 9496, Independent Component Analyses, Compressive Sampling, Large Data Analyses (LDA), Neural Networks, Biosystems, and Nanoengineering XIII, 94960X (20 May 2015); doi: 10.1117/12.2178521
Show Author Affiliations
Uwe Meyer-Baese, Florida State Univ. (United States)
Crispin Odom, Florida State Univ. (United States)
Guillermo Botella, Univ. Complutense de Madrid (Spain)
Anke Meyer-Baese, Florida State Univ. (United States)


Published in SPIE Proceedings Vol. 9496:
Independent Component Analyses, Compressive Sampling, Large Data Analyses (LDA), Neural Networks, Biosystems, and Nanoengineering XIII
Harold H. Szu; Liyi Dai; Yufeng Zheng, Editor(s)

© SPIE. Terms of Use
Back to Top